PHENOMENON:

Soda can crushes in cold water

QUESTION: Why might the soda can crush when moved from hot to cold?

Activity Process	Observation/Evidence/ Patterns	Why?	Connection
Hot Water, Cold Water & Food Dye [Temperature & KE]	Hot H ₂ O - dye spreaded out fast Cold H ₂ O- dye spreaded out slow	 Molecules = always moving = has KE Increasing temp = increasing KE Molecules move faster Decreasing temp = decreasing KE Molecules move slower 	Heating $\rm H_2O$ in can increased the KE of the $\rm H_2O$. Cooling the can & $\rm H_2O$ decreased the KE of the $\rm H_2O$.
Crater Lab	Fast ball = biggest crater, Most spatter Slow ball = smallest crater Least splatter	 Moving objects apply a force to other objects. Increasing KE = increasing force of collision Decreasing KE = decreasing force of collision 	Hot H ₂ 0 has more KE. The KE from the hot H ₂ 0 was a large force pushing out from inside the can. Cold H ₂ 0 has less KE. The KE from the cold H ₂ 0 was a smaller force pushing out from inside the can.
Washers & Water [Heat Transfer]	Room temp washers & Hot H ₂ 0 - Washer Temp ↑, H ₂ 0 Temp ↓ Hot washers & Room temp H ₂ 0 - Washer Temp ↓, H ₂ 0 Temp ↑	 Heat is an energy that can be transferred from one object to another. Transfer of heat energy changes KE of both objects 	When the hot can was placed in ice, heat (& KE) was transferred from the hot can to the ice, cooling down the H2O in the can.
Tug of War [Unbalanced Forces]	Rope moved towards more people Rope stayed about the same	 Balanced forces = no change Unbalanced force change system until forces are balanced Force of collision of molecules is called pressure 	The can crushed because the force on the outside of the can was greater than the force on the inside of the can.